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Exercise 5.5.17 Let A =




0 a b

a 0 c

b c 0


 and

B =




c a b

a b c

b c a


.

a. Show that x3 − (a2 + b2 + c2)x− 2abc has real
roots by considering A.

b. Show that a2 + b2 + c2 ≥ ab+ ac+ bc by consid-
ering B.

Exercise 5.5.18 Assume the 2×2 matrix A is similar to
an upper triangular matrix. If tr A = 0 = tr A2, show that
A2 = 0.

Exercise 5.5.19 Show that A is similar to AT for all 2×2

matrices A. [Hint: Let A =

[
a b

c d

]
. If c = 0 treat the

cases b = 0 and b 6= 0 separately. If c 6= 0, reduce to the
case c = 1 using Exercise 5.5.12(d).]

Exercise 5.5.20 Refer to Section 3.4 on linear recur-
rences. Assume that the sequence x0, x1, x2, . . . satisfies

xn+k = r0xn + r1xn+1 + · · ·+ rk−1xn+k−1

for all n≥ 0. Define

A =




0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

...
0 0 0 · · · 1
r0 r1 r2 · · · rk−1


 , Vn =




xn

xn+1

...
xn+k−1


 .

Then show that:

a. Vn = AnV0 for all n.

b. cA(x) = xk− rk−1xk−1−·· ·− r1x− r0

c. If λ is an eigenvalue of A, the eigenspace Eλ has
dimension 1, and x = (1, λ , λ 2, . . . , λ k−1)T is an
eigenvector. [Hint: Use cA(λ ) = 0 to show that
Eλ = Rx.]

d. A is diagonalizable if and only if the eigenvalues
of A are distinct. [Hint: See part (c) and Theo-
rem 5.5.4.]

e. If λ1, λ2, . . . , λk are distinct real eigenvalues,
there exist constants t1, t2, . . . , tk such that xn =
t1λ n

1 + · · ·+ tkλ n
k holds for all n. [Hint: If D is di-

agonal with λ1, λ2, . . . , λk as the main diagonal
entries, show that An = PDnP−1 has entries that are
linear combinations of λ n

1 , λ n
2 , . . . , λ n

k .]

Exercise 5.5.21 Suppose A is 2× 2 and A2 = 0. If
tr A 6= 0 show that A = 0.

5.6 Best Approximation and Least Squares

Often an exact solution to a problem in applied mathematics is difficult to obtain. However, it is usually
just as useful to find arbitrarily close approximations to a solution. In particular, finding “linear approx-
imations” is a potent technique in applied mathematics. One basic case is the situation where a system
of linear equations has no solution, and it is desirable to find a “best approximation” to a solution to the
system. In this section best approximations are defined and a method for finding them is described. The
result is then applied to “least squares” approximation of data.

Suppose A is an m×n matrix and b is a column in Rm, and consider the system

Ax = b

of m linear equations in n variables. This need not have a solution. However, given any column z ∈ Rn,
the distance ‖b−Az‖ is a measure of how far Az is from b. Hence it is natural to ask whether there is a
column z in Rn that is as close as possible to a solution in the sense that

‖b−Az‖
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is the minimum value of ‖b−Ax‖ as x ranges over all columns in Rn.

The answer is “yes”, and to describe it define

U = {Ax | x lies in Rn}

Az

b b−Az

0
U

This is a subspace of Rn (verify) and we want a vector Az in U as close as
possible to b. That there is such a vector is clear geometrically if n = 3 by
the diagram. In general such a vector Az exists by a general result called
the projection theorem that will be proved in Chapter 8 (Theorem 8.1.3).
Moreover, the projection theorem gives a simple way to compute z because
it also shows that the vector b−Az is orthogonal to every vector Ax in U .
Thus, for all x in Rn,

0 = (Ax) · (b−Az) = (Ax)T (b−Az) = xT AT (b−Az)

= x · [AT (b−Az)]

In other words, the vector AT (b−Az) in Rn is orthogonal to every vector in Rn and so must be zero (being
orthogonal to itself). Hence z satisfies

(AT A)z = AT b

Definition 5.14 Normal Equations

This is a system of linear equations called the normal equations for z.

Note that this system can have more than one solution (see Exercise 5.6.5). However, the n×n matrix AT A

is invertible if (and only if) the columns of A are linearly independent (Theorem 5.4.3); so, in this case,
z is uniquely determined and is given explicitly by z = (AT A)−1AT b. However, the most efficient way to
find z is to apply gaussian elimination to the normal equations.

This discussion is summarized in the following theorem.

Theorem 5.6.1: Best Approximation Theorem

Let A be an m×n matrix, let b be any column in Rm, and consider the system

Ax = b

of m equations in n variables.

1. Any solution z to the normal equations

(AT A)z = AT b

is a best approximation to a solution to Ax = b in the sense that ‖b−Az‖ is the minimum
value of ‖b−Ax‖ as x ranges over all columns in Rn.

2. If the columns of A are linearly independent, then AT A is invertible and z is given uniquely
by z = (AT A)−1AT b.
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We note in passing that if A is n×n and invertible, then

z = (AT A)−1AT b = A−1b

is the solution to the system of equations, and ‖b−Az‖ = 0. Hence if A has independent columns, then
(AT A)−1AT is playing the role of the inverse of the nonsquare matrix A. The matrix AT (AAT )−1 plays a
similar role when the rows of A are linearly independent. These are both special cases of the generalized

inverse of a matrix A (see Exercise 5.6.14). However, we shall not pursue this topic here.

Example 5.6.1

The system of linear equations
3x− y= 4

x+ 2y= 0
2x+ y= 1

has no solution. Find the vector z =

[
x0

y0

]
that best approximates a solution.

Solution. In this case,

A =




3 −1
1 2
2 1


 , so AT A =

[
3 1 2
−1 2 1

]


3 −1
1 2
2 1


=

[
14 1

1 6

]

is invertible. The normal equations (AT A)z = AT b are
[

14 1
1 6

]
z =

[
14
−3

]
, so z = 1

83

[
87
−56

]

Thus x0 =
87
83 and y0 =

−56
83 . With these values of x and y, the left sides of the equations are,

approximately,

3x0− y0 =
317
83 = 3.82

x0 + 2y0 =
−25
83 =−0.30

2x0 + y0 =
118
83 = 1.42

This is as close as possible to a solution.

Example 5.6.2

The average number g of goals per game scored by a hockey player seems to be related linearly to
two factors: the number x1 of years of experience and the number x2 of goals in the preceding 10
games. The data on the following page were collected on four players. Find the linear function
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g = a0 +a1x1 +a2x2 that best fits these data.

g x1 x2

0.8 5 3
0.8 3 4
0.6 1 5
0.4 2 1

Solution. If the relationship is given by g = r0 + r1x1 + r2x2, then the data can be described as
follows: 



1 5 3
1 3 4
1 1 5
1 2 1







r0

r1

r2


=




0.8
0.8
0.6
0.4




Using the notation in Theorem 5.6.1, we get

z = (AT A)−1AT b

= 1
42




119 −17 −19
−17 5 1
−19 1 5






1 1 1 1
5 3 1 2
3 4 5 1







0.8
0.8
0.6
0.4


=




0.14
0.09
0.08




Hence the best-fitting function is g = 0.14+0.09x1 +0.08x2. The amount of computation would
have been reduced if the normal equations had been constructed and then solved by gaussian
elimination.

Least Squares Approximation

In many scientific investigations, data are collected that relate two variables. For example, if x is the
number of dollars spent on advertising by a manufacturer and y is the value of sales in the region in
question, the manufacturer could generate data by spending x1, x2, . . . , xn dollars at different times and
measuring the corresponding sales values y1, y2, . . . , yn.

(x1, y1)
(x2, y2)

(x3, y3)

(x4, y4)

(x5, y5)

Line 1Line 2

0
x

y

Suppose it is known that a linear relationship exists between the vari-
ables x and y—in other words, that y = a+ bx for some constants a and
b. If the data are plotted, the points (x1, y1), (x2, y2), . . . , (xn, yn) may
appear to lie on a straight line and estimating a and b requires finding
the “best-fitting” line through these data points. For example, if five data
points occur as shown in the diagram, line 1 is clearly a better fit than line
2. In general, the problem is to find the values of the constants a and b

such that the line y = a+bx best approximates the data in question. Note
that an exact fit would be obtained if a and b were such that yi = a+ bxi

were true for each data point (xi, yi). But this is too much to expect. Ex-
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perimental errors in measurement are bound to occur, so the choice of a and b should be made in such a
way that the errors between the observed values yi and the corresponding fitted values a+bxi are in some
sense minimized. Least squares approximation is a way to do this.

The first thing we must do is explain exactly what we mean by the best fit of a line y = a+ bx to an
observed set of data points (x1, y1), (x2, y2), . . . , (xn, yn). For convenience, write the linear function
r0 + r1x as

f (x) = r0 + r1x

so that the fitted points (on the line) have coordinates (x1, f (x1)), . . . , (xn, f (xn)).

(x1, f (x1))

(x1, y1)

(xi, f (xi))

(xi, yi) (xn, f (xn))

(xn, yn)

d1

di

dn

y
=

f (
x)

0 x1 xi xn

x

y

The second diagram is a sketch of what the line y = f (x) might look
like. For each i the observed data point (xi, yi) and the fitted point
(xi, f (xi)) need not be the same, and the distance di between them mea-
sures how far the line misses the observed point. For this reason di is often
called the error at xi, and a natural measure of how close the line y = f (x)
is to the observed data points is the sum d1 + d2 + · · ·+ dn of all these
errors. However, it turns out to be better to use the sum of squares

S = d2
1 +d2

2 + · · ·+d2
n

as the measure of error, and the line y = f (x) is to be chosen so as to make this sum as small
as possible. This line is said to be the least squares approximating line for the data points
(x1, y1), (x2, y2), . . . , (xn, yn).

The square of the error di is given by d2
i = [yi− f (xi)]

2 for each i, so the quantity S to be minimized is
the sum:

S = [y1− f (x1)]
2 +[y2− f (x2)]

2 + · · ·+[yn− f (xn)]
2

Note that all the numbers xi and yi are given here; what is required is that the function f be chosen in such
a way as to minimize S. Because f (x) = r0 + r1x, this amounts to choosing r0 and r1 to minimize S. This
problem can be solved using Theorem 5.6.1. The following notation is convenient.

x =




x1

x2
...

xn


 y =




y1

y2
...

yn


 and f (x) =




f (x1)
f (x2)

...
f (xn)


=




r0 + r1x1

r0 + r1x2
...

r0 + r1xn




Then the problem takes the following form: Choose r0 and r1 such that

S = [y1− f (x1)]
2 +[y2− f (x2)]

2 + · · ·+[yn− f (xn)]
2 = ‖y− f (x)‖2

is as small as possible. Now write

M =




1 x1

1 x2
...

...
1 xn


 and r =

[
r0

r1

]

Then Mr = f (x), so we are looking for a column r =

[
r0

r1

]
such that ‖y−Mr‖2 is as small as possible.

In other words, we are looking for a best approximation z to the system Mr = y. Hence Theorem 5.6.1
applies directly, and we have
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Theorem 5.6.2

Suppose that n data points (x1, y1), (x2, y2), . . . , (xn, yn) are given, where at least two of
x1, x2, . . . , xn are distinct. Put

y =




y1

y2
...

yn


 M =




1 x1

1 x2
...

...
1 xn




Then the least squares approximating line for these data points has equation

y = z0 + z1x

where z =

[
z0

z1

]
is found by gaussian elimination from the normal equations

(MT M)z = MT y

The condition that at least two of x1, x2, . . . , xn are distinct ensures that MT M is an invertible
matrix, so z is unique:

z = (MT M)−1MT y

Example 5.6.3

Let data points (x1, y1), (x2, y2), . . . , (x5, y5) be given as in the accompanying table. Find the
least squares approximating line for these data.

x y

1 1
3 2
4 3
6 4
7 5

Solution. In this case we have

MT M =

[
1 1 · · · 1
x1 x2 · · · x5

]



1 x1

1 x2
...

...
1 x5




=

[
5 x1 + · · ·+ x5

x1 + · · ·+ x5 x2
1 + · · ·+ x2

5

]
=

[
5 21

21 111

]
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and MT y =

[
1 1 · · · 1
x1 x2 · · · x5

]



y1

y2
...

y5




=

[
y1 + y2 + · · ·+ y5

x1y1 + x2y2 + · · ·+ x5y5

]
=

[
15
78

]

so the normal equations (MT M)z = MT y for z =

[
z0

z1

]
become

[
5 21

21 111

]
=

[
z0

z1

]
=

[
15
78

]

The solution (using gaussian elimination) is z =

[
z0

z1

]
=

[
0.24
0.66

]
to two decimal places, so the

least squares approximating line for these data is y = 0.24+0.66x. Note that MT M is indeed
invertible here (the determinant is 114), and the exact solution is

z = (MT M)−1MT y = 1
114

[
111 −21
−21 5

][
15
78

]
= 1

114

[
27
75

]
= 1

38

[
9

25

]

Least Squares Approximating Polynomials

Suppose now that, rather than a straight line, we want to find a polynomial

y = f (x) = r0 + r1x+ r2x2 + · · ·+ rmxm

of degree m that best approximates the data pairs (x1, y1), (x2, y2), . . . , (xn, yn). As before, write

x =




x1

x2
...

xn


 y =




y1

y2
...

yn


 and f (x) =




f (x1)
f (x2)

...
f (xn)




For each xi we have two values of the variable y, the observed value yi, and the computed value f (xi). The
problem is to choose f (x)—that is, choose r0, r1, . . . , rm —such that the f (xi) are as close as possible to
the yi. Again we define “as close as possible” by the least squares condition: We choose the ri such that

‖y− f (x)‖2 = [y1− f (x1)]
2 +[y2− f (x2)]

2 + · · ·+[yn− f (xn)]
2

is as small as possible.
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Definition 5.15 Least Squares Approximation

A polynomial f (x) satisfying this condition is called a least squares approximating polynomial

of degree m for the given data pairs.

If we write

M =




1 x1 x2
1 · · · xm

1

1 x2 x2
2 · · · xm

2
...

...
...

...

1 xn x2
n · · · xm

n




and r =




r0

r1
...

rm




we see that f (x) = Mr. Hence we want to find r such that ‖y−Mr‖2 is as small as possible; that is, we
want a best approximation z to the system Mr = y. Theorem 5.6.1 gives the first part of Theorem 5.6.3.

Theorem 5.6.3

Let n data pairs (x1, y1), (x2, y2), . . . , (xn, yn) be given, and write

y =




y1

y2
...

yn


 M =




1 x1 x2
1 · · · xm

1

1 x2 x2
2 · · · xm

2
...

...
...

...

1 xn x2
n · · · xm

n




z =




z0

z1
...

zm




1. If z is any solution to the normal equations

(MT M)z = MT y

then the polynomial
z0 + z1x+ z2x2 + · · ·+ zmxm

is a least squares approximating polynomial of degree m for the given data pairs.

2. If at least m+1 of the numbers x1, x2, . . . , xn are distinct (so n≥ m+1), the matrix MT M is
invertible and z is uniquely determined by

z = (MT M)−1MT y

Proof. It remains to prove (2), and for that we show that the columns of M are linearly independent
(Theorem 5.4.3). Suppose a linear combination of the columns vanishes:

r0




1
1
...
1


+ r1




x1

x2
...

xn


+ · · ·+ rm




xm
1

xm
2
...

xm
n


=




0
0
...
0



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If we write q(x) = r0 + r1x+ · · ·+ rmxm, equating coefficients shows that

q(x1) = q(x2) = · · ·= q(xn) = 0

Hence q(x) is a polynomial of degree m with at least m+1 distinct roots, so q(x) must be the zero poly-
nomial (see Appendix D or Theorem 6.5.4). Thus r0 = r1 = · · ·= rm = 0 as required.

Example 5.6.4

Find the least squares approximating quadratic y = z0 + z1x+ z2x2 for the following data points.

(−3, 3), (−1, 1), (0, 1), (1, 2), (3, 4)

Solution. This is an instance of Theorem 5.6.3 with m = 2. Here

y =




3
1
1
2
4




M =




1 −3 9
1 −1 1
1 0 0
1 1 1
1 3 9




Hence,

MT M =




1 1 1 1 1
−3 −1 0 1 3

9 1 0 1 9







1 −3 9
1 −1 1
1 0 0
1 1 1
1 3 9



=




5 0 20
0 20 0

20 0 164




MT y =




1 1 1 1 1
−3 −1 0 1 3

9 1 0 1 9







3
1
1
2
4



=




11
4

66




The normal equations for z are



5 0 20
0 20 0

20 0 164


z =




11
4

66


 whence z =




1.15
0.20
0.26




This means that the least squares approximating quadratic for these data is
y = 1.15+0.20x+0.26x2.
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Other Functions

There is an extension of Theorem 5.6.3 that should be mentioned. Given data pairs (x1, y1), (x2, y2),
. . . , (xn, yn), that theorem shows how to find a polynomial

f (x) = r0 + r1x+ · · ·+ rmxm

such that ‖y− f (x)‖2 is as small as possible, where x and f (x) are as before. Choosing the appropriate
polynomial f (x) amounts to choosing the coefficients r0, r1, . . . , rm, and Theorem 5.6.3 gives a formula
for the optimal choices. Here f (x) is a linear combination of the functions 1, x, x2, . . . , xm where the ri

are the coefficients, and this suggests applying the method to other functions. If f0(x), f1(x), . . . , fm(x)
are given functions, write

f (x) = r0 f0(x)+ r1 f1(x)+ · · ·+ rm fm(x)

where the ri are real numbers. Then the more general question is whether r0, r1, . . . , rm can be found such
that ‖y− f (x)‖2 is as small as possible where

f (x) =




f (x1)
f (x2)

...
f (xm)




Such a function f (x) is called a least squares best approximation for these data pairs of the form
r0 f0(x)+ r1 f1(x)+ · · ·+ rm fm(x), ri in R. The proof of Theorem 5.6.3 goes through to prove

Theorem 5.6.4

Let n data pairs (x1, y1), (x2, y2), . . . , (xn, yn) be given, and suppose that m+1 functions
f0(x), f1(x), . . . , fm(x) are specified. Write

y =




y1

y2
...

yn


 M =




f0(x1) f1(x1) · · · fm(x1)
f0(x2) f1(x2) · · · fm(x2)

...
...

...
f0(xn) f1(xn) · · · fm(xn)


 z =




z1

z2
...

zm




1. If z is any solution to the normal equations

(MT M)z = MT y

then the function
z0 f0(x)+ z1 f1(x)+ · · ·+ zm fm(x)

is the best approximation for these data among all functions of the form
r0 f0(x)+ r1 f1(x)+ · · ·+ rm fm(x) where the ri are in R.

2. If MT M is invertible (that is, if rank (M) = m+1), then z is uniquely determined; in fact,
z = (MT M)−1(MT y).
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Clearly Theorem 5.6.4 contains Theorem 5.6.3 as a special case, but there is no simple test in gen-
eral for whether MT M is invertible. Conditions for this to hold depend on the choice of the functions
f0(x), f1(x), . . . , fm(x).

Example 5.6.5

Given the data pairs (−1, 0), (0, 1), and (1, 4), find the least squares approximating function of
the form r0x+ r12x.

Solution. The functions are f0(x) = x and f1(x) = 2x, so the matrix M is

M =




f0(x1) f1(x1)
f0(x2) f1(x2)
f0(x3) f1(x3)


=



−1 2−1

0 20

1 21


= 1

2



−2 1

0 2
2 4




In this case MT M = 1
4

[
8 6
6 21

]
is invertible, so the normal equations

1
4

[
8 6
6 21

]
z =

[
4
9

]

have a unique solution z = 1
11

[
10
16

]
. Hence the best-fitting function of the form r0x+ r12x is

f (x) = 10
11x+ 16

112x. Note that f (x) =




f (−1)
f (0)
f (1)


=




−2
11

16
11

42
11


, compared with y =




0
1
4




Exercises for 5.6

Exercise 5.6.1 Find the best approximation to a solution
of each of the following systems of equations.

x+ y− z= 5
2x− y+ 6z = 1
3x+ 2y− z= 6
−x+ 4y+ z= 0

a. 3x + y+ z= 6
2x + 3y− z= 1
2x− y+ z= 0
3x− 3y+ 3z = 8

b.

Exercise 5.6.2 Find the least squares approximating line
y = z0 + z1x for each of the following sets of data points.

a. (1, 1), (3, 2), (4, 3), (6, 4)

b. (2, 4), (4, 3), (7, 2), (8, 1)

c. (−1, −1), (0, 1), (1, 2), (2, 4), (3, 6)

d. (−2, 3), (−1, 1), (0, 0), (1, −2), (2, −4)

Exercise 5.6.3 Find the least squares approximating
quadratic y = z0 + z1x+ z2x2 for each of the following
sets of data points.

a. (0, 1), (2, 2), (3, 3), (4, 5)

b. (−2, 1), (0, 0), (3, 2), (4, 3)
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Exercise 5.6.4 Find a least squares approximating func-
tion of the form r0x+ r1x2 + r22x for each of the follow-
ing sets of data pairs.

a. (−1, 1), (0, 3), (1, 1), (2, 0)

b. (0, 1), (1, 1), (2, 5), (3, 10)

Exercise 5.6.5 Find the least squares approximating
function of the form r0 + r1x2 + r2 sin πx

2 for each of the
following sets of data pairs.

a. (0, 3), (1, 0), (1, −1), (−1, 2)

b. (−1, 1
2), (0, 1), (2, 5), (3, 9)

Exercise 5.6.6 If M is a square invertible matrix, show
that z = M−1y (in the notation of Theorem 5.6.3).

Exercise 5.6.7 Newton’s laws of motion imply that an
object dropped from rest at a height of 100 metres will
be at a height s = 100− 1

2gt2 metres t seconds later,
where g is a constant called the acceleration due to grav-
ity. The values of s and t given in the table are observed.
Write x = t2, find the least squares approximating line
s = a+bx for these data, and use b to estimate g.

Then find the least squares approximating quadratic
s = a0 +a1t +a2t2 and use the value of a2 to estimate g.

t 1 2 3
s 95 80 56

Exercise 5.6.8 A naturalist measured the heights yi (in
metres) of several spruce trees with trunk diameters xi (in
centimetres). The data are as given in the table. Find the
least squares approximating line for these data and use
it to estimate the height of a spruce tree with a trunk of
diameter 10 cm.

xi 5 7 8 12 13 16
yi 2 3.3 4 7.3 7.9 10.1

Exercise 5.6.9 The yield y of wheat in bushels per acre
appears to be a linear function of the number of days x1 of
sunshine, the number of inches x2 of rain, and the num-
ber of pounds x3 of fertilizer applied per acre. Find the
best fit to the data in the table by an equation of the form
y = r0 + r1x1 + r2x2 + r3x3. [Hint: If a calculator for in-
verting AT A is not available, the inverse is given in the
answer.]

y x1 x2 x3

28 50 18 10
30 40 20 16
21 35 14 10
23 40 12 12
23 30 16 14

Exercise 5.6.10

a. Use m = 0 in Theorem 5.6.3 to show that the
best-fitting horizontal line y = a0 through the data
points (x1, y1), . . . , (xn, yn) is

y = 1
n
(y1 + y2 + · · ·+ yn)

the average of the y coordinates.

b. Deduce the conclusion in (a) without using Theo-
rem 5.6.3.

Exercise 5.6.11 Assume n=m+1 in Theorem 5.6.3 (so
M is square). If the xi are distinct, use Theorem 3.2.6 to
show that M is invertible. Deduce that z = M−1y and that
the least squares polynomial is the interpolating polyno-
mial (Theorem 3.2.6) and actually passes through all the
data points.

Exercise 5.6.12 Let A be any m× n matrix and write
K = {x | AT Ax = 0}. Let b be an m-column. Show that,
if z is an n-column such that ‖b−Az‖ is minimal, then all

such vectors have the form z+ x for some x ∈ K. [Hint:
‖b−Ay‖ is minimal if and only if AT Ay = AT b.]

Exercise 5.6.13 Given the situation in Theorem 5.6.4,
write

f (x) = r0 p0(x)+ r1 p1(x)+ · · ·+ rm pm(x)

Suppose that f (x) has at most k roots for any choice of
the coefficients r0, r1, . . . , rm, not all zero.

a. Show that MT M is invertible if at least k+1 of the
xi are distinct.

b. If at least two of the xi are distinct, show that
there is always a best approximation of the form
r0 + r1ex.

c. If at least three of the xi are distinct, show that
there is always a best approximation of the form
r0 + r1x+ r2ex. [Calculus is needed.]
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Exercise 5.6.14 If A is an m×n matrix, it can be proved
that there exists a unique n×m matrix A# satisfying the
following four conditions: AA#A = A; A#AA# = A#; AA#

and A#A are symmetric. The matrix A# is called the gen-

eralized inverse of A, or the Moore-Penrose inverse.

a. If A is square and invertible, show that A# = A−1.

b. If rank A = m, show that A# = AT (AAT )−1.

c. If rank A = n, show that A# = (AT A)−1AT .

5.7 An Application to Correlation and Variance

Suppose the heights h1, h2, . . . , hn of n men are measured. Such a data set is called a sample of the heights
of all the men in the population under study, and various questions are often asked about such a sample:
What is the average height in the sample? How much variation is there in the sample heights, and how can
it be measured? What can be inferred from the sample about the heights of all men in the population? How
do these heights compare to heights of men in neighbouring countries? Does the prevalence of smoking
affect the height of a man?

The analysis of samples, and of inferences that can be drawn from them, is a subject called mathemat-

ical statistics, and an extensive body of information has been developed to answer many such questions.
In this section we will describe a few ways that linear algebra can be used.

It is convenient to represent a sample {x1, x2, . . . , xn} as a sample vector15 x =
[

x1 x2 · · · xn

]

in Rn. This being done, the dot product in Rn provides a convenient tool to study the sample and describe
some of the statistical concepts related to it. The most widely known statistic for describing a data set is
the sample mean x defined by16

x = 1
n
(x1 + x2 + · · ·+ xn) =

1
n

n

∑
i=1

xi

The mean x is “typical” of the sample values xi, but may not itself be one of them. The number xi− x is
called the deviation of xi from the mean x. The deviation is positive if xi > x and it is negative if xi < x.
Moreover, the sum of these deviations is zero:

n

∑
i=1

(xi− x) =

(
n

∑
i=1

xi

)
−nx = nx−nx = 0 (5.6)

−1 0 1

Sample x

x

−3 −2 −1

Centred
Sample xc

xc

This is described by saying that the sample mean x is central to the
sample values xi.

If the mean x is subtracted from each data value xi, the resulting data
xi− x are said to be centred. The corresponding data vector is

xc =
[

x1− x x2− x · · · xn− x
]

and (5.6) shows that the mean xc = 0. For example, we have plotted the
sample x =

[
−1 0 1 4 6

]
in the first diagram. The mean is x = 2,

15We write vectors in Rn as row matrices, for convenience.
16The mean is often called the “average” of the sample values xi, but statisticians use the term “mean”.


